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Contrastive unsupervised representation learning 
(CURL)
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Goal: learn a good feature extractor , e.g. DNNs.f
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Contrastive Loss: 
ℓ[f(x) ⋅ (f(x+) − f(x−))]
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Learnt representation works for supervised tasks
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Why does CURL perform well?
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The first theoretical guarantees for CURL (Arora et al. 2019)
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Finding a good representation  guarantees to generalise well.̂f

Informal bound:  Lsup( ̂f ) ≤ αLun(f) + 𝒪 (ℛ(ℱ), δ)
Complexity

       ∀f ∈ ℱ

• : Constant 

•  : Rademacher complexity of 
function class . 

• : Confidence of PAC learning

α
ℛ

ℱ
δ

S. Arora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. In ICML, 2019.



Our contributions
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• We show PAC-Bayes bounds for CURL and derive new algorithms by minimising the 
bounds. 
• We replace the Rademacher complexity term from Arora et al. (2019)  

with a Kullback–Leibler divergence term, which is easier to compute in general. 

• The PAC-Bayes bound directly suggests a (theory driven) learning algorithm. 

• We also show a PAC-Bayes bound for non-iid contrastive data. 
• The iid assumption seems unrealistic in many settings and is unlikely to hold with 

contrastive datasets.



General PAC-Bayes
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• : Posterior. Probability distribution over a function class . It can depend on training data. 

• : Prior. Probability distribution over a function class . It cannot depend on training data. 

•  : Expected risk of  on test data 

•  : Expected risk of  on train data

Q ℱ
P ℱ
R(Q) = 𝔼(x,y)∼𝒟𝔼f∼Qℓ(y, f(x)) Q

̂R (Q) =
1
m

m

∑
i=1

𝔼f∼Qℓ(yi, f(xi)) Q

R(Q) ≤ α ̂R (Q) + 𝒪 (KL(Q∥P), δ)
Complexity

       ∀Q over ℱ,  w.h.p. 1 − δ
Informal bound: 



The first PAC-Bayesian generalisation bound for CURL
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Lsup(Q) ≤ α ̂Lun(Q) + O (KL(Q∥P), δ)
Complexity

       ∀Q over ℱ,  w.h.p. 1 − δ

Informal bound: 

• The complexity term is easier to compute than Rademacher one. 
• Since all terms in the right-hand side are explicit or easy to approximate, 

we can minimise the bound directly.



Learning algorithms & Experiments
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Dziugaite and Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. In UAI, 2017.

• Minimising  w.r.t. . 

•  and  are multivariate Gaussians with diagonal covariance. 

• We optimise ’s mean and covariance by using SGD (Dziugaite and Roy. 2017). 

• Approximate  by sampling weights of neural networks from . 

• Evaluation procedures: 

• Learning:  on contrastive unsupervised data. 

• Evaluation: test 0-1 risk on supervised data by using centroid classifier.

̂Lun(Q) + 𝒪 (KL(Q∥P), δ) Q
P Q

Q
̂Lun Q

Q



Experimental results: Supervised performance & bound
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- AVG-2 risk: averaged 0-1 risk over all combination of two classes in supervised data. 

- PAC-Bayes bound: computed on the stochastic neural networks.



Conclusion
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• We provide the first PAC-Bayes generalisation bounds for CURL. 
• This allows to derive new algorithms by directly optimising the bound. 

• More results in the paper: 
• General PAC-Bayes bound for multiple dissimilar samples. 
• Bounds and learning algorithm for the non-iid case.
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