PAC-Bayesian Contrastive Unsupervised Representation Learning

Paper: http://auai.org/uai2020/proceedings/24_main_paper.pdf Code: <u>https://github.com/nzw0301/pb-contrastive</u>

Pascal Germain

Benjamin Guedj

Contrastive unsupervised representation learning (CURL)

Goal: learn a good feature extractor \mathbf{f} , e.g. DNNs.

similar **x**⁺

dissimilar **x**⁻

Contrastive unsupervised representation learning (CURL)

Goal: learn a good feature extractor ${f f}$, e.g. DNNs.

Contrastive Loss: $\ell[\mathbf{f}(\mathbf{x}) \cdot (\mathbf{f}(\mathbf{x}^+) - \mathbf{f}(\mathbf{x}^-))]$

> $f(x), f(x^+)$ are similar; $f(x), f(x^-)$ are dissimilar.

Learnt representation works for supervised tasks

Fixed feature extractor Input

Why does CURL perform well?

Predicted label

The first theoretical guarantees for CURL (Arora et al. 2019)

Informal bound: $L_{sup}(\hat{\mathbf{f}}) \leq \alpha L_{un}(\mathbf{f}) + \mathcal{O}(\mathcal{R}(\mathcal{F}), \delta)$

• α : Constant

- \mathscr{R} : Rademacher complexity of function class \mathcal{F} .
- δ : Confidence of PAC learning

S. Arora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning. In ICML, 2019.

 $\forall \mathbf{f} \in \mathscr{F}$

Complexity

Finding a good representation $\widehat{\mathbf{f}}$ guarantees to generalise well.

Our contributions

- bounds.
 - We replace the Rademacher complexity term from Arora et al. (2019)
 - The PAC-Bayes bound directly suggests a (theory driven) learning algorithm.
- We also show a PAC-Bayes bound for non-iid contrastive data.
 - contrastive datasets.

• We show PAC-Bayes bounds for CURL and derive new algorithms by minimising the

with a Kullback-Leibler divergence term, which is easier to compute in general.

The iid assumption seems unrealistic in many settings and is unlikely to hold with

General PAC-Bayes

- $R(Q) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} \mathbb{E}_{f \sim Q} \mathscr{E}(y, f(\mathbf{x}))$: Expected risk of Q on test data • $\widehat{R}(Q) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{f \sim Q} \ell(y_i, f(\mathbf{x_i}))$: Expected risk of Q on train data

Informal bound:

Complexity

Q: Posterior. Probability distribution over a function class \mathscr{F} . It <u>can</u> depend on training data. • P: Prior. Probability distribution over a function class \mathscr{F} . It <u>cannot</u> depend on training data.

$R(Q) \le \alpha \widehat{R}(Q) + \mathcal{O}\left(\mathrm{KL}(Q \| P), \delta\right) \quad \forall Q \text{ over } \mathcal{F}, \text{ w.h.p. } 1 - \delta$

The first PAC-Bayesian generalisation bound for CURL

Informal bound:

$L_{\sup}(Q) \le \alpha \widehat{L}_{\operatorname{un}}(Q) + O\left(\operatorname{KL}(Q \| P), \delta\right)$

Complexity

The complexity term is easier to compute than Rademacher one.
Since all terms in the right-hand side are explicit or easy to approximate, we can minimise the bound directly.

 $Q \| P \rangle, \delta \end{pmatrix} \quad \forall Q \text{ over } \mathcal{F}, \text{ w.h.p. } 1 - \delta$

Learning algorithms & Experiments

- Minimising $\widehat{L}_{un}(Q) + \mathcal{O}(\operatorname{KL}(Q||P), \delta)$ w.r.t. Q.
 - P and Q are multivariate Gaussians with diagonal covariance.
 - We optimise Q's mean and covariance by using SGD (Dziugaite and Roy. 2017).
 - Approximate \hat{L}_{un} by sampling weights of neural networks from Q.
- Evaluation procedures:
 - **Learning**: Q on contrastive unsupervised data. **Evaluation**: test 0-1 risk on supervised data by using centroid classifier.

Dziugaite and Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. In UAI, 2017.

Experimental results: Supervised performance & bound

					PAC-Bayes based methods				
	supervised		Arora et al. (2019)		parameter selection by validation set		parameter selection by PAC-Bayes bound		
	μ	μ -5	μ	μ -5	μ	μ -5	μ	μ -5	
CIFAR-100									
AVG-2 risk↓	0.086	0.125	0.106	0.144	0.100	0.128	0.246	0.292	
TOP-5 risk↓	0.422	0.540	0.471	0.574	0.460	0.548	0.766	0.806	
Contrastive test risk $R_{un}(Q) \downarrow$ PAC-Bayes upper bound \downarrow	_				0.197 0.718		0.327 0 .437		
AUSLAN									
AVG-2 risk↓	0.198	0.249	0.144	0.167	0.147	0.171	0.174	0.209	
TOP-5 risk↓	0.643	0.759	0.433	0.518	0.435	0.509	0.494	0.616	
Contrastive test risk $R_{un}(Q) \downarrow$	_		_		0.185		0.220		
FAC-Dayes upper bound 4			-	—		U.41/		U.JUL	

AVG-2 risk: averaged 0-1 risk over all combination of two classes in supervised data.
 PAC-Bayes bound: computed on the stochastic neural networks.

Conclusion

- We provide the first PAC-Bayes generalisation bounds for CURL. This allows to derive new algorithms by directly optimising the bound.
- More results in the paper: General PAC-Bayes bound for multiple dissimilar samples. Bounds and learning algorithm for the non-iid case.

Paper: http://auai.org/uai2020/proceedings/24_main_paper.pdf Code: <u>https://github.com/nzw0301/pb-contrastive</u>

