Scalable Algorithm for Probabilistic Overlapping Community Detection

Kento Nozawa, Kei Wakabayashi University of Tsukuba

WSDM 2017 workshop on SWM

Large Graph

It's hard to analyze a large graph.

Examples:

- Citation networks
- Co-author relationships
- Social networks
- Hyperlinks on web pages

Needs: Decomposition a large graph into some smaller subgraphs

Community Structures in Graph

In the same community,

- nodes are densely connected internally
- nodes resemble the others
 - Same affiliation
 - Same interest
 - Related research area

Overlapping Community

Each node belongs to multiple communities.

Many graphs have overlapping communities

- Ex. Related Research areas in co-author graph

Bag-of-nodes Representation

Bag-of-words for graph

- A node corresponds to one document
- The node and its adjacency list correspond to words in the document

	node as doc	nodes as words		
	А	A, B, C, D, E, x, y, z		
	В	B, A, E		
	С	C, D, E, A		
	D	D, E, C, A		
	Е	E, B, A, C, D		
	X	x, y, A, w		
	У	y, A, x, z		
Ŭ D Ž	Z	z, y, A		
	W	W, X		
5 Graph	Bag-of-nodes			

Latent Dirichlet Allocation (LDA) [Blei+, 2003]

- Probabilistic generative model for bag-of-words
- Find topics from words co-occurrence
- Each topic defines a distribution over all words

6 **Documents** (bag-of-words)

Topics (distribution over all words)

LDA for Graph

A topic represents an overlapping community.

Each community is an affiliation probability distribution over nodes.

Node as doc	Nodes as words	\bigcap	F	ECDR	and A		na to
Α	A, B, C, D, E, x, y, z	the community with high probability					
В	B, A, E		F	0.20		Y	0 22
С	C, D, E, A		C	0.20		v V	0.22
D	D, E, C, A		D	0.18		Z	0.20
Е	E, B, A, C, D		В	0.18		А	0.15
×	x y Δ w		A	0.12		W	0.07
^	^, y, /, vv		X	0.04		С	0.05
У	y, A, x, z		У	0.03		D	0.04
Z	z, y, A		Z	0.03		В	0.04
۱۸/			W	0.02		E	0.01

Graph as documents

Communities (distributions over nodes)

Stochastic Variational Inference [Mimno+, 2012]

Inference algorithms based on stochastic gradient descent

- Update parameters based on sampling nodes in each iteration
- mini-batch size : # sampling nodes as document

Graph as documents

Experiment

Evaluation of scalability for the graph size

Runtime for overlapping community detection

Quality metrics for overlapping communities

- Triangle participation ratio (TPR)
 - Ratio of #nodes that belong to a triangle
 - Higher is better
- Conductance
 - Ratio of #edges that link to an outer node
 - Lower is better

Experimental Datasets

Name	#nodes	#edges
DBLP	317,080	1,049,866
Orkut	3,072,441	117,185,083
Friendster	65,608,366	1,806,067,135

From SNAP Datasets

Only Friendster:

- Store into MySQL
- Sample mini-batch size records from the table

Comparison of Runtime

#communities: 4,000
#iterations: 1,000
Mini-batch size: 2,000

The Metrics of DBLP Communities

TPR: the median of SVBLDA is the third best Conductance: the median of SVBLDA is the third worst

#communities: 4,000#iterations: 1,000Mini-batch size: 2,000

Parameter Sensitivity in DBLP

- Varying mini-batch size or # iterations when fixing the other parameter
- No significantly improvement of TPR/Conductance when mini-batch size > 3000 or # iterations > 2000

Mini-batch size: 2,000

Conclusion

- Scalable community detection algorithm based on LDA for large graph
- About 2 hours to detect communities from the large graph
- It's unnecessary to set large mini-batch size and #iteration for DBLP datasets